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Graphs of basic functions 

Fact:  Knowing what some basic functions look like can really help with some problems. The simplest ones, 

like y = x
2
, aren’t given here. 

Function Graph Important Facts 

y = sin x 

 

Yes, I’m sure you know what sine looks 

like. Note that this can help you see that 

sin 0 = 0, and so on; sine “starts” at the 

origin, in the middle of its range, and goes 

up. Its period is 2π, its domain is �, and 

its range is [–1, 1]. Important points 

happen every ¼ of the period, or π/2. 

y = cos x 

 

Cosine, on the other hand, starts at the 

top of its range when x = 0. The period, 

domain, and range are the same as for 

sine. 

y= tan x 

 

Tangent passes through the origin, since 

tan 0 = 0. The asymptotes are at odd 

multiples of π/2. Notice that the slope of 

tangent at its x-intercepts is not 

particularly flat. If you check the value of 

its derivative, you’ll discover that the 

slope there is 1. The graph of cotangent is 

similar, but slopes down rather than up, 

and has asymptotes at multiples of π. 

y = sec x  

 

Secant is the reciprocal of cosine, so its 

asymptotes occur where cosine is zero, at 

odd multiples of π/2 — just like tangent! 

That’s because tangent is sine divided by 

cosine; it also has cosine in the 

denominator. The other cool thing about 

secant is how it “fits” together with the 

graph of cosine, as seen below. 

 
Cosecant looks much the same, except 

that the asymptotes go where sine is 

zero. 
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y = ln x 

 

The natural logarithm is the log base e, 

but all logarithm graphs look pretty much 

the same. Since ln 1 = 0 (see the section 

on values to know for more information 

on that), the x-intercept is 1. Since ln 0 is 

undefined, there is no y-intercept. The y-

axis is a vertical asymptote of the 

function. It’s handy to know that 

logarithms grow more slowly than any 

polynomial. Eventually even y = 0.00001x 

will be above this graph. 

y = e
x
 

 

 
As you can see in the graph above, the 

natural exponential function and the 

natural logarithm function are inverses, 

and so are reflections of each other in  

y = x. The x-axis is a horizontal asymptote, 

and the y-intercept is 1. Also, exponential 

functions grow faster than any 

polynomial; eventually this function 

would end up above y = x
100

. 

 

y = 21 x−  

 

Here we’ve got a semicircle. This time I 

used 1 for the radius to get half of the 

unit circle. In general, 2 2
y r x= −  would 

be a semicircle centered at the origin 

with radius r. There was once a slope field 

problem on the no-calculator multiple 

choice where knowing this shape helped. 

y = 
1

x
 

 

This has both of the axes as asymptotes. 

Notice that it’s always sloping down. Its 

derivative is negative. 
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y = x  

 

The domain of this one is x ≥ 0; yes, zero 

is in the domain. 

Even functions Even functions can be defined both 

geometrically and algebraically. 

Geometrically, a function is even if it is 

symmetric about the y-axis. Algebraically, 

this translates to f(x) = f(–x). The most 

common examples are y = x
2
 (see the 

“evenness”?) and y = cos x. Since you 

already know those two, I’ve included a 

different example here.  

Odd functions Odd functions, on the other hand, are 

symmetric about the origin. Algebraically, 

f(–x) = –f(x). I remember it as “O, odd, 

origin.” The most common examples are  

y = x, y = x
3
, and y = sin x. I’m putting a 

fourth one to the right. Yeah, you’ll never 

figure out what I graphed there.
1
 

 
 

Fact: Inverse functions are defined like this: f and g are inverse functions if f(g(x)) = g(f(x)) = x for all x in 

the appropriate domains. We then write that g(x) = f 
–1

(x). Their graphs, as seen in the entry for 

exponential functions above, are reflections of each other in the line y = x. 

 

Some important precalculus facts to have memorized 
Formulas from geometry (useful with related rates and volumes of solids) 

Area of a triangle: A = 
1 1

sin
2 2

bh ab C=  Area of a trapezoid: A = ( )1 2

1

2
h b b+  

Area of a circle: A = πr
2
 Circumference of a circle: C = 2πr 

Volume of a cylinder: V = πr
2
h 

Volume of a cone: 
21

3
V r hπ=  

Volume of a sphere: 
34

3
V rπ=  

Surface area of a sphere: SA = 4πr
2
 

The Pythagorean Theorem: In a right triangle, 

the square of the length of the hypotenuse is 

equal to the sum of the squares of the lengths 

of the legs; i.e., leg
2
 + leg

2
 = hyp

2
. 

 

                                                           
1
 It’s three perfectly ordinary functions combined in some way, if you’re really bored and have way too much time on your 

hands. Actually, on second thought, you should spend that time studying for this exam! STOP trying to figure it out! 
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Sine and cosine values, for angles in radians and degrees 

θθθθ θθθθ ° sin θθθθ cos θθθθ 

0 0° 0 1 

6

π
 30° 

1

2
 

3

2
 

4

π
 45° 

1 2

22
=  

1 2

22
=  

3

π
 60° 

3

2
 

1

2
 

2

π
 90° 1 0 

π 180° 0 –1 

3

2

π
 270° –1 0 

2π 360° 0 1 
 

Fact: Tangent is sine divided by cosine; if you know the values above, you can always calculate the 

corresponding value of tangent in very little time. 

Fact: The values of sine are positive when y is positive, in quadrants I and II, and negative elsewhere; 

cosine values are positive where x is positive, in quadrants I and IV. That’s “ASTC” in quadrant order. 

Fact: Exponential functions and logarithmic functions are inverses of each other. 

Fact: These values come up a lot, and you should know them automatically. 

 ln 1 = 0 ln e = 1 ln e
2
 = 2  e

0
 = 1 e

1
 = e e

–1
 = 

1

e
 

Laws of Logarithms 

logbM + logbN = logbMN logbM – logbN = logb

M

N

 
 
 

 logbM
p
 =p logbM 

Be careful: There is no general rule like this for separating the argument of a logarithm that has terms 

added or subtracted. For instance, ln(1 + x
2
) does not break down into two separate logarithms. 

Defining the derivative of a function f(x) 

Def’n: The derivative of a function f(x) is a formula for calculating its slope at any point on the function. 

Def’n: The formal definition of the derivative of a function f(x) is defined as f ′(x) = 
→

+ −

0

( ) ( )
lim
h

f x h f x

h
. 

Fact: The fraction whose limit is taken in that formula is known as the difference quotient, and it 

represents the slope between two points on the curve very close together: (x, f(x)) and (x + h, f(x + h)). 

Fact: There is an additional formula for derivative at x= a: f ′(a) = 
( ) ( )

lim
x a

f x f a

x a→

−

−
, which is still slope. 



6 

 

Computing the derivative of a function f(x) 

Fact: We hardly ever use the definition of derivative to actually find derivatives of functions. Instead, we 

use the derivative rules below. 

Rule Formula Comments 

Power  1n nd
x nx

dx

−  =   
This only works when the base is a variable 

and the power is a number. 

Constant Multiple  
[ ]( ) ( )

d
kf x kf x

dx
′=  

If you have a constant times a function, the 

constant just comes along for the ride. This 

makes sense, because multiplying by a 

constant gives a vertical dilation; all of the 

slopes are k times as great as before. 

Sum and Difference 
[ ]( ) ( ) ( ) ( )

d
f x g x f x g x

dx
′ ′± = ±  

This one lets you do what you would certainly 

do already — put a plus sign between the 

separate derivatives 

Product  
[ ]( ) ( ) ( ) ( ) ( ) ( )

d
f x g x f x g x g x f x

dx
′ ′= +  

Here’s where it starts to get more challenging. 

I remember this as first times the derivative of 

the second plus second times the derivative 

of the first, or 1st ∙ d2nd + 2nd ∙ d1st. 

Quotient  

[ ]
2

( ) ( ) ( ) ( ) ( )

( ) ( )

d f x g x f x f x g x

dx g x g x

′ ′− 
= 

 
 

This is the old Lo-d-Hi.
2
 Remember that “low” 

is on the outside of both top and bottom. It’s

lo dhi hi dlo

lo lo

⋅ − ⋅

⋅
. 

Chain  
( ) ( )( ) ( ) ( )

d
f g x f g x g x

dx
′ ′  = ⋅   

Aretha!
3
 The chain rule is vital, as you will 

recall if you’ve ever done an entire 

assignment without remembering to use it at 

all. Whenever there’s an “inside” function — 

whenever the function doesn’t just have x in it 

— you take the derivative of the outside 

function and then multiply by the derivative 

of the inside function. Every function has its 

derivative show up exactly once. 
   

Sine 
[ ]sin cos

d
x x

dx
=  

The trigonometric derivatives need to be 

memorized completely. Don’t waste time 

trying to figure out the derivative of tangent 

by rewriting as a fraction of sine and cosine; 

you don’t have that much time to spare. 

Recall that all of the derivatives of the “co” 

functions are negative. This is true with the 

inverse trig functions as well. 

Cosine 
[ ]cos sin

d
x x

dx
= −  

Tangent 
[ ] 2tan sec

d
x x

dx
=  

Cotangent 
[ ] 2cot csc

d
x x

dx
= −  

Secant 
[ ]sec sec tan

d
x x x

dx
=  

Cosecant 
[ ]csc csc cot

d
x x x

dx
= −  

                                                           
2
 Purchase the Blood, Sweat & Tears song. 

3
 Purchase the Aretha Franklin song. 

http://www.amazon.com/Chain-Of-Fools/dp/B001BZJDR4/
http://www.amazon.com/Hi-De-Ho/dp/B001KUXPCE/
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Rule Formula Comments 

Natural Exponential x xd
e e

dx
  =   

This is the easiest derivative of all. Don’t make 

any mistakes with it. If the function needs the 

chain rule, it looks like 

[ ]stuff stuff stuff
d d

e e
dx dx

  = ⋅  . 

General Exponential 
ln

x xd
a a a

dx
  =   

This one is very similar to the derivative of e
x
, 

but because the base isn’t e, you multiply by 

the natural logarithm of the base. (If the base 

were e, the ln e would be 1 and disappear.) 

Natural Logarithm 
[ ]

1
ln

d
x

dx x
=  

Make sure you don’t get it backwards. The 

derivative of natural log is 
1

x
, not the other way 

around. To take the derivative of 
1

x
, you 

rewrite it as x
–1

 and use the power rule. 

General Logarithm 
[ ]

1
log

ln
a

d
x

dx x a
=  

Similarly to the exponential function with base 

a, there’s an extra ln a. This time it’s in the 

denominator, with the x. 
   

Inverse sine 

(sin
-1

) [ ]
2

1
arcsin

1

d
x

dx x

=
−

 
The most likely of these to appear are arcsine 

and arctangent, followed by arcsecant. The 

others, like ordinary trig functions, have 

negative derivatives when they start with “co.” 
Inverse tangent 

(tan
–1

) [ ]
2

1
arctan

1

d
x

dx x
=

+
 

Inverse secant  

(sec
–1

) [ ]
2

1
arcsec

1

d
x

dx x x

=
−

 

Inverse cosine 

(cos
–1

) [ ]
2

1
arccos

1

d
x

dx x

−
=

−
 

Inverse cotangent 

(cot
–1

) [ ]
2

1
arccot

1

d
x

dx x

−
=

+
 

Inverse cosecant 

(csc
–1

) [ ]
2

1
arccsc

1

d
x

dx x x

−
=

−
 

   

Implicit 

differentiation 

This doesn’t really have a formula. For a discussion of implicit differentiation, see 

the section on related rates problems. 

Derivative of an 

inverse function ( )
1

1

1
( )

( )

d
f x

dx f f x

−

−
  =  ′

 
Is it really important that you have this formula 

memorized? Probably not; it might come up in 

one question. The key thing here is that the 

slopes of inverse functions are reciprocals of 

each other (since 
y

x

∆

∆
 becomes 

x

y

∆

∆
 when the 

variables are interchanged), but at the points 

which correspond to each other, NOT at the 

points with the same x-value. In other words, 

the slope at (a, b) is the reciprocal of the slope 

at (b, a) on the inverse function. 
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Finding slope of a function f(x) at a point 

Finding instantaneous rate of change of a function f(x) 

Finding a tangent line to a curve f(x) 

Finding a normal line to a curve f(x) 

Fact: The slope of a curve at a point is the same thing as the slope of the tangent line at that point and as 

the instantaneous rate of change of the function there. This value is found using the derivative. 

Fact: The average rate of change of a function over an interval is just the slope between the endpoints. 

Fact: To find an equation for a line, you generally want two facts: a point and the slope. If you need the 

equation for a tangent line, the difficulty is that you only get one point on the curve, and to find a slope, it 

generally takes two points. That’s what the derivative is for. Not to belabor what I wrote earlier, the 

derivative is a formula for the slope at a point. So take the derivative and use the given x-value (or the one 

you found, whichever) to get a numerical slope. I like to start with point-slope form: y – y1 = m(x – x1). 

Be careful: Many people are occasionally tripped up by their propensity to write the formula for the 

derivative where a numerical value of slope should go. If you’re asked for a line, it had better look like an 

equation for a line when you’re done. 

Def’n: A tangent line is a line that passes through a point on the curve and has the same slope as the 

curve does at that point. (In other words, its slope is the value of the derivative at that point.) 

Def’n: A normal line is a line perpendicular to the tangent at the point of tangency. If you’ve already found 

the slope of the tangent, the slope of the normal is the negative reciprocal of that value, and the point 

used would be the same. 

Fact: A tangent line can be used to approximate values of a function. If you know the tangent line to a 

curve at, say, x = a, then you can approximate values of the function for x near a using the line. This is 

useful if it’s much more difficult to substitute a number into the actual function than it is to use a linear 

one. And it’s pretty much always easier to use a line. 

 

Finding limits4 using L’Hôpital’s rule 

Fact:  Sometimes when you attempt to evaluate a limit by substituting a value, you get a “nonanswer.” 

These are called indeterminate forms. Getting one does not necessarily mean that the limit does not exist. 

In fact, you have yet to determine it. (Indeterminate = still have to determine it, get it?) 

Fact: There are several different sorts of indeterminate forms, and not all of them work with L’Hôpital’s 

rule. For now, you don’t need to worry about the ones that don’t. If it matters a lot to you, ask about it 

after the AP Calculus exam, and I’ll tell you about them again. 

                                                           
4
 Purchase the Etta James song. (I love this version of the song, and I couldn’t find any other vaguely logical place to attach a 

link.) 

http://www.amazon.com/Take-It-To-the-Limit/dp/B00138AYPO/
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Rule: Suppose that when you attempt to evaluate 
( )

lim
( )x a

f x

g x→
 by substituting in the value of a for x, you get 

one of these forms: 
0

0
, 

∞

∞
, 

−∞

∞
, 

∞

−∞
, or 

−∞

−∞
. These are all indeterminate, and the limit may or may not 

exist. Under those circumstances, L’Hôpital’s Rule says that
( ) ( )

lim lim
( ) ( )x a x a

f x f x

g x g x→ →

′
=

′
, provided the second limit 

exists. 

Fact: This is not the same as the quotient rule; you take the derivatives of numerator and denominator 

separately. 

Fact: If, when you try plugging a into the new fraction, you still get one of those five fractional 

indeterminate forms, you can use L’Hôpital’s again. And again. And again. As long as you see that you’re 

making progress, anyway. If you aren’t getting closer to an answer, try something else. If at any point in 

this process you get a fraction in which the either the numerator or denominator is a nonzero constant, 

don’t use the rule again! It no longer applies — and you no longer need it to answer the question.  

 

Finding extreme values of a function f(x) 

Finding where a function f(x) is increasing or decreasing 

Def’n: Extreme values (a/k/a extrema) are maximum and minimum values.  

Fact: Extrema can only occur at critical numbers and at endpoints. 

Def’n: Critical numbers are values of x in the domain of a function at which its derivative is either zero or 

undefined. 

Def’n: A function f is increasing on an interval if, for x1 < x2, f(x1) < f(x2). In other words, as x gets bigger, y 

gets bigger. Decreasing is defined similarly, but as x gets bigger, y gets smaller. 

Fact: If f ′(x) > 0 on an interval, then f(x) is increasing there; if f ′(x) < 0 on an interval, then f(x) is 

decreasing there. 

The First Derivative Test: If f is a continuous function and c is a critical number of f, then 

(a) if f ′ changes signs from positive to negative at x = c, then f(c) is a local maximum of f;  

(b) if f ′ changes signs from negative to positive at x = c, then f(c) is a local minimum of f; and 

(c) if f ′ does not change signs at x = c, then f(c)  is not an extreme value of f. 

Also, if f ′ > 0 leading up to the right endpoint of an interval, then that endpoint is a local maximum.  

If f ′ > 0 leading away from the left endpoint of an interval, then that endpoint is a local minimum. In 

each case, the opposite is true for f ′ < 0. 

Def’n: An absolute maximum of f is a y-value f(c) which is the largest y-value for any x in the domain of 

the function. It may occur at more than one x-value. Similarly, an absolute minimum of f is a y-value f(c) 

which is the smallest y-value. 



10 

 

Def’n: A local maximum, also called a relative maximum, is the largest y-value in some interval, but not 

necessarily in the entire domain; a local minimum (relative minimum) is the smallest. 

Process: 

1. Find the derivative, f ′(x). 

2. Find values of x at which the derivative is 0 or undefined (a/k/a critical numbers). 

3. Set up a number line, labeled f ′ (use the actual name of the function, which might not be f). If the 

interval has endpoints, the number line must only go that far. Mark the critical numbers on the f ′ 

number line. 

4. Check a value of x in each interval in f ′ to determine if f ′ is positive or negative there. 

5. Where f ′ > 0, f is increasing, and where f ′ < 0, f is decreasing. 

6. Where f ′ changes signs (at a place where the function is continuous), f has either a maximum or 

minimum. Endpoints can also be extrema. See the first derivative test above. 

7. To determine the absolute extrema, check the actual y-values at the relative extrema and at the 

endpoints to find the largest and smallest values. 

The Second Derivative Test: Suppose that c is a critical number of f. 

• If f ′(c) = 0 and f ″(c) > 0, then f has a local minimum at x = c. 

• If f ′(c) = 0 and f ″(c) < 0, then f has a local maximum at x = c. 

This works because of concavity. You start with the fact that f ′ is zero, which means there’s a horizontal 

tangent. If f ″ is positive there, then the graph of f is concave up (like a cup), and you must be at the 

bottom of the cup. If f ″ is negative where f ′ is zero, then the downward concavity (like a frown) puts 

the point at the top of the curve. 

Fact: The second derivative test is mainly used when you can’t use the first derivative for some reason, 

either because you have no way to find the value of the first derivative on either side of the critical 

number, or because the derivative depends on the values of both x and y, and changing the value of x also 

changes the value of y that would go into the derivative. 

Be careful to answer the question asked. It may ask for x-values, values of f (a/k/a y-values), or points. 
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Relating f ′′′′ and f ″″″″ to the graph of f 

Fact:  If you are given a graph of f, f ′, or f ″ and have to draw or find the graph of one of the others, look 

first for places where something is zero. For instance, at a maximum of f, you generally have a zero slope, 

leading to a zero value for f ′. If f ″ is zero at a particular value of x, the graph of f ′ will have a horizontal 

tangent, and possibly a maximum or minimum. After you’ve accounted for those, look at where increasing 

and decreasing behaviors of a function give positive and negative values of its derivative, respectively. 

f f ′′′′ f ″″″″ Example graphs 

The original function The (first) derivative of f The second derivative of f  

 Shows the slope of f Shows the concavity of f  

  Shows slope of f ′, since 

it’s the derivative of f ′ 

 

increasing positive no information 

Notice that the curve’s 

concavity might change, 

but y is increasing the 

whole time. 

 

decreasing negative no information 

This is the same situation 

as above, only 

decreasing. 

   

horizontal tangent zero no information 

 
 

 
relative maximum zero or undefined; 

changes signs + to – 

negative or undefined 

     
relative minimum zero or undefined; 

changes signs – to + 

positive or undefined 
 

     
concave up increasing positive 

       
concave down decreasing negative 

        
possible point of 

inflection 

no information zero, or possibly 

undefined 

 
point of inflection has relative maximum 

or minimum 

changes signs In the graph above, the 

leftmost dot is not at a 

point of inflection, 

although the curve is so 

flat there that it has no 

concavity. The others are. 
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Def’n: A point of inflection is a point on the graph of a function at which its concavity changes. Since the 

second derivative gives information about the concavity, you generally look for a point of inflection by 

finding zeros of the second derivative. Be careful, though. It is not enough that the second derivative be 

zero. For there to be a point of inflection, the second derivative must change signs. This is equivalent to 

the first derivative’s having a maximum or minimum. 

Fact: Knowing the concavity of f won’t tell you if the function is increasing or decreasing, and vice versa. 

 

Solving related rates problems 

Fact:  Believe it or not, all related rates problems are fundamentally the same. You get an appropriate 

equation, you differentiate everything with respect to t, you plug in what you know, and you solve for 

what you would like to find. I’ll work out an example below following this process. 

Fact: You can’t do these sorts of problems without implicit differentiation, which is fundamental to the 

process. To differentiate implicitly just means that you’re not solving for a particular variable first; in fact, 

there may be more than two variables in the equation. All of the variables are thought of as functions of t 

in the case of related rates, which means that if you differentiate r
2
, for instance, the result is 2

dr
r

dt
. 

Process: 

0. Find a problem to do. Two hikers begin at the same location and travel in perpendicular 

directions. Hiker A travels due north at a rate of 5 miles per hour; 

Hiker B travels due west at a rate of 8 miles per hour. At what rate 

is the distance between the hikers changing 3 hours into the hike?
5
 

1. Read the question and see what 

variables are involved and what 

you’re looking for. Translate that 

into symbols. A diagram may help. 

North and west suggest a picture. 

 
I’m using r for the distance, because the only reason I’d care about 

how far they were apart is whether their two-way radios would still 

work. So r is the distance the radios are from each other. I used O 

for the origin. 

I know that 5
da

dt
= mi/h, and 8

db

dt
= mi/h. I’m trying to find 

dr

dt
 

when t = 3 h. 

2. Write an equation that relates 

the variables. 

In this case, that’s pretty clearly the Pythagorean theorem. 

Geometric formulas are common here, and there’s a section in this 

document devoted to some you might want to know. Similar 

triangles might also come up. And sometimes the formula is just 

given to you. Here, it’s a
2
 + b

2
 = r

2
. 

                                                           
5
 From The Humongous Book of Calculus Problems, W. Michael Kelley, Alpha Books, 2006. 

A 

B O 

r 
a 

b 

http://www.amazon.com/Humongous-Book-Calculus-Problems-People/dp/1592575129/


13 

 

3. Differentiate both sides of the 

equation with respect to t, 

remembering to use implicit 

differentiation. Also, be careful that 

if there are constants (for instance, 

if the hypotenuse were unchanging, 

like a ladder), that you make those 

derivatives zero. 

2 2 2

2 2 2

a b r

da db dr
a b r

dt dt dt

+ =

+ =
 

In this case, I’ll divide everything by 2 so that it’s not so… busy. 

da db dr
a b r

dt dt dt
+ =  

4. Substitute in the values you 

know. See if you need any 

additional ones before you solve for 

the desired result. 

After three hours (remember, t = 3?), A will have traveled 5 ∙ 3 = 15 

miles and B will have gone 8 ∙ 3 = 24 miles.
6
 So 

da db dr
a b r

dt dt dt
+ =  becomes 

15 ∙ 5 + 24 ∙ 8 = r
dr

dt
. But I still need r. 

 

5. If necessary, use facts from the 

problem to find any missing values. 

In this case, I have the Pythagorean relationship to exploit. 

a
2
 + b

2
 = r

2
 

15
2
 + 24

2
 = r

2
 

r
2
 = 801 

r = 801  mi 

6. Finish substituting, and solve for 

the rate you’re looking for. 
15 ∙ 5 + 24 ∙ 8 = 801

dr

dt
 

267 = 801
dr

dt
 

267

801

dr

dt
=  ≈ 9.434 mi/h 

 

Some important theorems 

The Intermediate Value Theorem 

If f is continuous on [a, b], and k is any value between f(a) and f(b), then there is some value c between a 

and b such that f(c) = k. In English, this means that a continuous function hits every y-value between the 

values at the endpoints. 

The Extreme Value Theorem 

If a function f is continuous on the closed interval [a, b], then f will have both an absolute maximum and 

an absolute minimum on the interval. 

  

                                                           
6
 I’m not sure what Mr. Kelley was thinking. Hiking suggests rugged terrain. Who could keep up 8 mi/h for three hours 

under those conditions? The Roman army used to do about 4 mi/h on their roads. Those guys were serious marchers. Twice 

as fast seems a little nuts to me. (Love his math explanations, though.) 
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The Mean Value Theorem for Derivatives 

If a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), 

then there is a c somewhere between a and b such that 
( ) ( )

( )
f b f a

f c
b a

−
′ =

−
. In words, this says that the 

slope between the endpoints, also known as the slope of the secant line, must be the same as the slope 

of the curve at some point within the interval. It’s what would let the state trooper give you a ticket for 

speeding even if his radar never clocked you going over the limit: if your average speed on the stretch of 

road was over the limit, then you must have been going that fast at some time. If you need help 

remembering the formula, it’s just the slope equals the slope. 

The Mean Value Theorem for Integrals 

If f is continuous on [a, b], then there exists a value c in (a, b) where f(c) = 
1

( )
b

a
f x dx

b a− ∫ . It’s also called 

a “mean value theorem” because it really says the same thing as the previous one. Suppose that F(x) is 

an antiderivative of f(x). By the Fundamental Theorem of Calculus, the value of the integral is 

]( ) ( ) ( ) ( )
b b

aa
f x dx F x F b F a= = −∫ . Dividing both sides by (b – a) gives that

( ) ( ) 1
( ) ( )

b

a

F b F a
f x dx f c

b a b a

−
= =

− − ∫ , 

from above. See, it’s two theorems in one! And that leads us to the most important calculus theorem of 

all, which is also two theorems in one. 

The Fundamental Theorem of Calculus 

As stated above, there are two parts to this one, and they’re customarily labeled part 1 and part 2. 

However, there is not universal agreement as to which part is first and which is second. Here they are 

presented in the same order as in your book. 

FTC, part 1 

If f is continuous on [a, b], then the function defined by the definite integral ( ) ( )
x

a
F x f t dt= ∫ is 

differentiable on the interval [a, b], and its derivative is ( ) ( ) ( )
x

a

dF d
F x f t dt f x

dx dx

 ′ = = =  ∫ . This is 

fundamental because it shows that differentiation and integration are inverse operations; take the 

derivative of an integral, and you wind up with the original function f. This can be used to find the 

derivatives of functions defined as definite integrals. When you do that, beware of unusual limits of 

integration and the chain rule. 

FTC, part 2 

If f is continuous on [a, b] and F is any antiderivative of f on that interval, then the definite integral 

of f can be evaluated as ]( ) ( ) ( ) ( )
b b

aa
f x dx F x F b F a= = −∫ . This is just as fundamental as the first part, 

but states the relationship between differentiation and integration in a different way: to evaluate a 

definite integral, first find the antiderivative. Remember that when you evaluate a definite integral 

this way, the upper limit of integration is substituted in first. (If you get to the top, you get to be first 

in line.) 



15 

 

Solving kinematics problems (position, velocity, acceleration…) 

Fact:  Position is usually given in this sort of problem as a location on either the x- or y-axis, as in “the 

position of a particle traveling along the x-axis at time t is given by the function x(t) =” something or other. 

Associated with this is the idea of displacement, which literally means how far “out of place” the object is 

— its position relative to 0. 

Def’n: Velocity is the rate of change of position. As you know, rate of change is just slope. Depending on 

whether you look at the slope between two points or at a single point, you can have average velocity or 

instantaneous velocity. 

Def’n: Average velocity is displacement divided by elapsed time, or change in position over change in 

time. This takes two points to figure out.
7
 

Def’n: Instantaneous velocity is the derivative of position with respect to time: v(t) = s′(t).8
 When the term 

velocity is used alone, it is assumed to be the instantaneous sort. 

Def’n: Acceleration is the rate of change of velocity. Of course, you could have average acceleration, just 

as with velocity, but it’s calculus class, and we are generally talking about the instantaneous change, so 

a(t) = v′(t). 

Def’n: For completeness’ sake, I’ll add that the derivative of acceleration is called jerk, but I guarantee that 

you won’t find that term on the AP calculus exam. 

Fact: To get from position to velocity to acceleration, differentiate. The units can help you with this. 

Position is in distance units, like meters. Velocity would then be in something like meters per second, and 

acceleration in meters per second squared. To get from acceleration to velocity to position, integrate. 

Fact: Displacement can be thought of as net distance. Displacement can be found with the definite 

integral of velocity. However, if the object changes direction, just integrating will not find distance. First 

determine any times at which the velocity is zero. Those will divide the interval into pieces. Find the 

displacement on each piece. If any of those are negative (that’s moving backward), make them positive 

before adding together to get a total distance. 

Finding the average value of a function 

Fact:  The formula for the average value of a function is the same as the formula associated with the 

Mean Value Theorem for Integrals. Mean value, average value… get it? 

Rule: The average value of a function is the average height of the function. The formula for the average 

value of f on the interval [a, b] is favg = 
1

( )
b

a
f x dx

b a− ∫  =
( ) integral

interval

b

a
f x dx

b a
=

−

∫
. Since the area of a rectangle 

                                                           
7
 Actually, if you have a velocity function, you could also find average velocity by using the formula for the average value of 

a function. If you have a position function, do the change in position divided by change in time. You’ll get the same answer 

either way. 
8
 I know now why s is used for position! It’s from the Latin situs, translated as position or site. Michael Spivak is the man. 

http://www.amazon.com/Hitchhikers-Guide-Calculus-Michael-Spivak/dp/0883858126/
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is base × height, this works out to the area divided by the base to get the height. Remember that definite 

integrals come from adding up the areas of rectangles to begin with. 

 

Solving differential equations 

Def’n: A differential equation is an equation containing one or more derivatives. 

Fact: To solve a differential equation means to take an antiderivative (or perhaps more than one) until 

you find the original function. 

Def’n: A general solution of a differential equation is one in which the “+ C” from the antiderivative 

remains in the function in some form. It gives a formula for a lot of different functions which make the 

differential equation true. 

Def’n: A particular solution of a differential equation is one in which you use information about values of 

the original function, first derivative, and so on, to find the value of C and therefore the one function that 

satisfies both the differential equation and the given initial condition(s). 

Process: 

1. If necessary, separate the variables by multiplying or dividing so that all of the instances of one 

variable are on the left side of the equation and those of the second variable are on the right. It is 

particularly important in this process that dx and dy (or whatever variables you have) do not end up in 

the denominator of a fraction. You cannot integrate a function with dx or dy in the denominator. 

2. Write integral signs on both sides of the equation so that each side looks like an integral with correct 

notation. Do not skip this step; it shows your work and makes clear to the reader that you understand 

what you’re doing. 

3. Integrate each side, using whatever techniques are necessary to find the antiderivatives. 

4. As soon as the last integral sign is gone from the equation, the constant of integration (“+ C”) must 

appear, usually on the side with the dependent variable. While you could add a constant to each side, 

they would have to be different, and then you could subtract one to the second side and be back to a 

single constant. Do not wait to do this until later; the result of that is often an incorrect answer. You’ve 

been warned. 

Sometimes you can stop after step 4. Sometimes you are given an initial condition that lets you 

determine the value of C. Sometimes you are asked to find “the function y = f(x),” which requires that 

you solve for y in the answer. 

Fact: A very common differential equation is y ′= ky, in which the rate of change is directly proportional to 

the value of the function. Its solution is y = Ce
kt

. In the process of solving for y, removing a natural 

logarithm puts the C in a different place. This is one of the cases mentioned above in which adding C at the 

end will give an incorrect answer. 
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Finding the area between curves 

Fact:  The area between curves is found by integrating the top curve minus the bottom curve. That sounds 

ridiculously simple, and mainly it is, but there are a couple of things to be careful of, so I added this 

section.  

Process: 

1. Determine the limits of integration. Sometimes these are given to you as an interval on which you’re 

to find the area. Sometimes they come from specified vertical lines, like the y-axis or x = 3. And 

sometimes you have to determine one or both limits yourself by finding the intersection(s) of the two 

functions involved. 

Be careful that you actually write down the equation that you’re solving when you find those limits. 

It’s usually something like f(x) = g(x). The values cannot seem to come out of nowhere. However, if 

you have a calculator, it is perfectly permissible and sometimes absolutely necessary to solve that 

equation using technology. 

2. Decide which function is on top. If there’s a graph, this is simple. If you have to generate your own 

graph, though, be really careful that you don’t miss any intersections. If the functions intersect more 

than two times, you’ll have to deal with step 3. 

3. If one function is not always on top, it will take more than one integral to find the area. You need one 

( )top-bottom
b

a
dx∫  for each separate region. Write them down! Don’t leave an integral “assumed.” 

You have to show that you know the calculus, and part of that is writing down correct calculus. 

4. Integrate, either by hand if you don’t have a calculator or it’s really easy, or with a calculator 

otherwise. Don’t be a hero by working difficult antiderivatives by hand when you have a calculator and 

permission to use it. First off, you’re wasting valuable time. Secondly, you greatly increase your 

chances of error. And finally, you might actually be looking at a function with no nice antiderivative.
9
 

In that case, you wouldn’t only be using up extra time — it would be for no reason! 

 

Properties of definite integrals 

Rule Formula Comments 

Order of 

integration 
( ) ( )

b a

a b
f x dx f x dx= −∫ ∫  

If you switch the limits of integration, you 

change the sign of the result. Thinking 

back to the areas of rectangles, it’s like 

making the ∆x values negative, so that the 

“areas” change sign. 

Zero 
( ) 0

a

a
f x dx =∫

 

If there’s no base, there’s no area. 

Constant multiple 
( ) ( )

b b

a a
kf x dx k f x dx=∫ ∫

 

This works with k = –1, too, so a negative 

sign can be brought out. We use this idea 

all the time with u-substitution. Since k is 

a constant, only constants can be brought 

outside. 

                                                           
9
 “Nice” = closed-form, which is to say, an ordinary function with no integral sign remaining. 
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Sum and difference ( )( ) ( ) ( ) ( )
b b b

a a a
f x g x dx f x dx g x dx± = ±∫ ∫ ∫

 

Just like with derivatives. 

Additivity 
( ) ( ) ( )

b c c

a b a
f x dx f x dx f x dx+ =∫ ∫ ∫

 

Geometrically, this is easy to see if the 

values a, b, and c are left to right along 

the x-axis. The cool part is that it 

continues to work regardless of their 

relative sizes. 

 

Integrating a function f(x) [computing an antiderivative] 

Fact: Integrals tend to be more difficult than derivatives, because you often can’t just look at them and 

know what rule to use. However, it helps enormously to be able to recognize common integrals. Those are 

the derivative rules in reverse. 

Rule Formula Comments 

Power  1

1

n
n x

x dx C
n

+

= +
+∫  

Again, this only works when the power is a 

number. The power goes up when you integrate: 

integrate is increase, differentiate is decrease. 

Logarithm 1
lndx x C

x
= +⌠

⌡  

The absolute value is essential. Only use this rule 

when the power rule fails! If the power on x is 

not –1, then this rule will not apply. 

Exponential x x
e dx e C= +∫

 
1kx kx

e dx e C
k

= +∫
 

The second one is the chain rule with a constant 

coefficient on x. 

Trigonometric  sin cosx dx x C= − +∫
 

1
sin coskx dx kx C

k
= − +∫

 

The derivative of sine is positive, so its 

antiderivative is negative, and so on. 

cos sinx dx x C= +∫
 

1
cos sinkx dx kx C

k
= +∫

 
2sec tanx dx x C= +∫

 
2csc cotx dx x C= − +∫

 
sec tan secx x dx x C= +∫

 
csc cot cscx x dx x C= − +∫

 
Inverse 

Trigonometric  2
arctan

1

dx
x C

x
= +

+

⌠

⌡  

2
arcsin

1

dx
x C

x

= +
−

⌠

⌡  
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Integration by Substitution (a/k/a u-substitution
10

): 

If you can’t find an antiderivative by “just looking,” or using one of the rules above, then try u-substitution. 

It is about undoing the chain rule. Because of that, you’re looking for something that corresponds to the 

“inside” function in a chain rule derivative. 

Process for indefinite integrals: 

0. For this example, I’m using the generic chain rule result as the 

integrand.  
( )( ) ( )f g x g x dx′ ′∫  

1. Decide what to use for u, and write down what you’ve selected. Let u = g(x). 

2. Immediately take the derivative of this, and call it du. Don’t 

forget the dx. 

Then du = g′(x)dx. 

3. Substitute those into the integral you started with to make it an 

easier problem to integrate. 
( )( ) ( )f g x g x dx′ ′∫  

= ( )f u du′∫  

4. Integrate that function. = f(u) + C 

5. Go back to the original variable by replacing u. = f(g(x)) + C 
 

Process for definite integrals: 

0. The difference here is that there are limits of integration.  
( )( ) ( )

b

a
f g x g x dx′ ′∫  

1. Decide what to use for u, and write down what you’ve selected. Let u = g(x). 

2. Immediately take the derivative of this, and call it du. Don’t 

forget the dx. 

Then du = g′(x)dx. 

3. Calculate the new limits of integration. You do this by taking the 

values of x, which are a and b, and substituting them into the 

formula you wrote for u. (Note that  g(a) and g(b) are numbers.) 

If x = a, then u = g(a); 

if x = b, then u = g(b). 

3. Substitute those into the integral you started with to make it an 

easier problem to integrate. 
( )( ) ( )

b

a
f g x g x dx′ ′∫  

=
( )

( )
( )

g b

g a
f u du′∫  

4. Integrate that function. = ]
( )

( )
( )

g b

g a
f u  

5. Evaluate the definite integral using the limits in terms of u. It is 

not necessary to go back to x. Just finish the problem here. 
( ) ( )( ) ( )f g b f g a= −  

 

Be careful: The du NEVER goes in the denominator of the integrand, or under a radical, or inside a 

function, or anywhere but right at the end. 

  

                                                           
10

 Purchase the Soulja Boy song. 

http://www.amazon.com/gp/product/B000WL7UQ4


20 

 

Finding volumes of solids 

Fact:  Just like you integrate the formula for a curve to find the associated area, you can integrate an area 

formula to find a volume. 

Fact: If you have a three-dimensional object with cross sections that correspond to a geometric figure, 

integrate the area formula for that shape.  Then you substitute appropriate information about the base 

and height from the curve itself in order to get a function you can integrate. In each case here, the base of 

the figure is the region bounded by y = sin x and the x-axis between x = 0 and x = π/2. The cross sections 

are perpendicular to the x-axis, hence the dx. In each case below, the height of the blue rectangle is y, the 

distance from the x-axis to the curve. 

Cross 

sections 

Formula Integral Base Figure 

Squares A = s
2
 /2 2

0
s dx

π

∫  = 

/2 2

0
y dx

π

∫ = 

( )
/2 2

0
sinx dx

π

∫    

Equilateral 

triangles 
= = =

° =

=2 2

1 1
sin

2 2

1
sin60

2

1 3 3

2 2 4

A bh ab C

bb

b b

 

/2 2

0

3

4
b dx

π

∫  = 

/2 2

0

3

4
y dx

π

∫  = 

( )
/2 2

0

3
sin

4
x dx

π

∫  
  

Semicircles 

with 

diameters on 

the xy-plane 

A = 
1

2
πr

2
, but be 

careful. In this case, r 

is half of y. 

/2 2

0

1

2
r dx

π
π ∫  = 

/2 2

0

1 1

2 2
y dx

π

π
 
 
 

⌠

⌡

= 

/2 2

0

1 1
sin

2 2
x dx

π

π
 
 
 

⌠

⌡

 

= ( )
/2 2

0

1
sin

8
x dx

π
π ∫  

  

You’ll probably notice how similar all of those look. It’s not a coincidence. 

  

π/2

1

x

y

x

y

z

π/2

1

x

y

x

y

z

π/2

1

x

y

x

yz
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Fact: To revolve the same region about the x-axis, you’d use the disc method. This involves integrating the 

area of a circle, which looks a whole lot like those above. The object goes below the x-axis this time, 

though. Revolving it about a different horizontal line, y = k, involves using the washer method, or as I like 

to think about it, discs with circles cut out. I’ll use the line y = 3 in the example. 

Cross 

sections 

Formula Integral Base Figure 

Circles 

formed by 

revolving 

the region 

about the x-

axis 

A =πr
2
 /2 2

0
r dx

π
π ∫  = 

/2 2

0
y dx

π
π ∫ = 

( )
/2 2

0
sinx dx

π
π ∫    

Washers 

formed by 

revolving 

the region 

about the 

horizontal 

line y = 3 

A = πR
2
 – πr

2
  ( )

/2 2 2

0
R r dx

π
π −∫  = 

( )
/2 2 2

0
3 green dx

π
π −∫ = 

( )( )
/2

22

0
3 3 sinx dx

π

π − −⌠
⌡

 
 

 
 

Fact: To revolve a region like this one about a vertical line, the most convenient way to go is with the shell 

method. 

Fact: To determine whether to use discs or shells for solids of revolution, look at the blue rectangle (or in 

your case probably gray pencil rectangle) that is the height of the curve. If that is perpendicular to the axis 

of revolution, you want discs (or washers). If it is parallel to the axis of revolution, use shells. That’s 

perpendiscular and parashell. In the graphs below, the radius is green. 

Cross 

sections 

Formula Integral Base Figure 

Cylindrical 

shells 

formed by 

revolving 

about the y-

axis. 

SA = 2πrh /2

0
2 rhdx

π
π ∫  = 

/2

0
2 xy dx

π
π ∫ = 

/2

0
2 sinx x dx

π
π ∫  

 

 
Cylindrical 

shells 

formed by 

revolving 

about the 

line x = –π/4 

SA = 2πrh /2

0
2 rhdx

π
π ∫  = 

/2

0

2
4

x y dx

π
π

π
 

+ 
 

⌠

⌡

= 

/2

0

2 sin
4

x x dx

π
π

π
 

+ 
 

⌠

⌡

 

 

 
You’re seeing it from the 

back. I couldn’t get the 

window to show it well 

any other way. 

 

π/2

1

x

y

x

y

π/2

1

2

3

4

5

6 y

x

yz

−π/2 π/2

1

x

y

yz

−π −π/2 π/2

1

x

y

x

y

z



22 

 

Index 

A 

absolute maximum, 11, 16 

absolute minimum, 11, 16 

acceleration, 18 

additivity, 21 
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area of a trapezoid, 4 

area of a triangle, 4 

Aretha, 7 

average height, 19 

average rate of change, 9 

average value, 18, 19 

average value of a function, 19 

average velocity, 18 

a
x
 derivative, 7 

B 

Blood, Sweat & Tears, 7 
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Franklin, Aretha, 7 
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G 
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general logarithm derivative, 8 

general solution, 19 
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H 
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I 

implicit differentiation, 8, 14, 15 
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net distance, 18 
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O 

odd functions, 4 

order of integration, 21 
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particular solution, 19 

perpendiscular, 25 

point of inflection, 13 
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power rule for derivatives, 6 

product rule for derivatives, 6 

properties of definite integrals, 21 
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R 

rate of change, 20 

reciprocal function, 4 
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relative maximum, 11, 13 
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S 

secant, 2, 17 

secant derivative, 7 

second derivative, 12, 13, 14 

Second Derivative Test, 12 
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shell method, 25 

shells, 25, 26 

sine, 2, 5, 7, 21 

sine and cosine values, 5 

sine derivative, 7 

slope, 13 

slope at a point, 9 

slope of a curve at a point, 9 

slope of the tangent line, 9 

solve a differential equation, 19 

Soulja Boy, 23 
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Spivak, Mike, 18 

square root function, 4 

sum and difference, 21 

sum and difference rule for derivatives, 6 

surface area of a sphere, 5 

T 

tangent, 2, 5, 7, 9, 12, 13 

tangent derivative, 7 

tangent line, 9 

trig function derivatives, 7 

trigonometric antiderivatives, 21 

U 

u-substitution, 21, 23 

V 

value of a function, 12 

velocity, 18 

volume of a cone, 5 

volume of a cylinder, 5 

volume of a sphere, 5 

volumes of solids with known cross section, 24, 25 

W 

washer method, 25 

washers, 25 

Y 

y ′= ky, 20 

Z 

zero slope, 13 

 


